z-logo
open-access-imgOpen Access
NAI1 Gene Encodes a Basic-Helix-Loop-Helix–Type Putative Transcription Factor That Regulates the Formation of an Endoplasmic Reticulum–Derived Structure, the ER Body
Author(s) -
Ryo Matsushima,
Yoichiro Fukao,
Mikio Nishimura,
Ikuko HaraNishimura
Publication year - 2004
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.021154
Subject(s) - biology , endoplasmic reticulum , rna splicing , intron , mutant , basic helix loop helix , gene , microbiology and biotechnology , transcription factor , alternative splicing , messenger rna , rna , genetics , dna binding protein
Plant cells develop various types of endoplasmic reticulum (ER)-derived structures with specific functions. ER body, an ER-derived compartment in Arabidopsis thaliana, is a spindle-shaped structure. The NAI1 gene regulates the development of ER bodies because mutation of NAI1 abolishes the formation of ER bodies. To better understand the role of NAI1, we cloned the NAI1 gene using a positional cloning strategy. The nai1-1 mutant had a single nucleotide change at an intron acceptor site of At2g22770 (NAI1 gene). Because of this mutation, aberrant splicing of NAI1 mRNA occurs in the nai1-1 mutant. NAI1 encodes a transcription factor that has a basic-helix-loop-helix (bHLH) domain. Transient expression of NAI1 induced ER bodies in the nai1-1 mutant. Two-dimensional electrophoresis and RT-PCR analyses showed that a putative lectin was depressed at both the mRNA and protein levels in nai1 mutants, as was a beta-glucosidase (PYK10). Our results provide direct evidence that a bHLH protein plays a role in the formation of ER bodies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom