z-logo
open-access-imgOpen Access
Circadian and Diurnal Calcium Oscillations Encode Photoperiodic Information in Arabidopsis
Author(s) -
John Love,
Antony N. Dodd,
Alex Webb
Publication year - 2004
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.020214
Subject(s) - circadian rhythm , arabidopsis , encode , calcium , arabidopsis thaliana , photoperiodism , biology , period (music) , biophysics , microbiology and biotechnology , botany , chemistry , gene , biochemistry , physics , endocrinology , mutant , acoustics , organic chemistry
We have tested the hypothesis that circadian oscillations in the concentration of cytosolic free calcium ([Ca2+]cyt) can encode information. We imaged oscillations of [Ca2+]cyt in the cotyledons and leaves of Arabidopsis (Arabidopsis thaliana) that have a 24-h period in light/dark cycles and also constant light. The amplitude, phase, and shape of the oscillations of [Ca2+]cyt and [Ca2+]cyt at critical daily time points were controlled by the light/dark regimes in which the plants were grown. These data provide evidence that 24-h oscillations in [Ca2+]cyt encode information concerning daylength and light intensity, which are two major regulators of plant growth and development.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom