z-logo
open-access-imgOpen Access
Mutations in thepale aleurone color1Regulatory Gene of theZea maysAnthocyanin Pathway Have Distinct Phenotypes Relative to the Functionally SimilarTRANSPARENT TESTA GLABRA1Gene inArabidopsis thaliana [W]
Author(s) -
Charles C. Carey,
Josie T. Strahle,
David A. Selinger,
Vicki L. Chandler
Publication year - 2004
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.018796
Subject(s) - aleurone , biology , genetics , gene , mutant , arabidopsis , mads box , arabidopsis thaliana , endosperm , locus (genetics) , transposable element
The pale aleurone color1 (pac1) locus, required for anthocyanin pigment in the aleurone and scutellum of the Zea mays (maize) seed, was cloned using Mutator transposon tagging. pac1 encodes a WD40 repeat protein closely related to anthocyanin regulatory proteins ANTHOCYANIN11 (AN11) (Petunia hybrida [petunia]) and TRANSPARENT TESTA GLABRA1 (TTG1) (Arabidopsis thaliana). Introduction of a 35S-Pac1 transgene into A. thaliana complemented multiple ttg1 mutant phenotypes, including ones nonexistent in Z. mays. Hybridization of Z. mays genomic BAC clones with the pac1 sequence identified an additional related gene, mp1. PAC1 and MP1 deduced protein sequences were used as queries to build a phylogenetic tree of homologous WD40 repeat proteins, revealing an ancestral gene duplication leading to two clades in plants, the PAC1 clade and the MP1 clade. Subsequent duplications within each clade have led to additional WD40 repeat proteins in particular species, with all mutants defective in anthocyanin expression contained in the PAC1 clade. Substantial differences in pac1, an11, and ttg1 mutant phenotypes suggest the evolutionary divergence of regulatory mechanisms for several traits that cannot be ascribed solely to divergence of the dicot and monocot protein sequences.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom