z-logo
open-access-imgOpen Access
The F-Box Protein ZEITLUPE Confers Dosage-Dependent Control on the Circadian Clock, Photomorphogenesis, and Flowering Time[W]
Author(s) -
David E. Somers,
WoeYeon Kim,
Ruishuang Geng
Publication year - 2004
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.016808
Subject(s) - circadian clock , photomorphogenesis , circadian rhythm , biology , period (music) , fkbp , photoperiodism , microbiology and biotechnology , genetics , botany , arabidopsis , mutant , endocrinology , gene , physics , acoustics
As an F-box protein, ZEITLUPE (ZTL) is involved in targeting one or more substrates for ubiquitination and degradation via the proteasome. The initial characterization of ZTL suggested a function limited largely to the regulation of the circadian clock. Here, we show a considerably broader role for ZTL in the control of circadian period and photomorphogenesis. Using a ZTL-specific antibody, we quantitated and characterized a ZTL dosage series that ranges from a null mutation to a strong ZTL overexpressor. In the dark, ztl null mutations lengthen circadian period, and overexpression causes arrhythmicity, suggesting a more comprehensive role for this protein in the clock than previously suspected. In the light, circadian period becomes increasingly shorter at higher levels of ZTL, to the point of arrhythmicity. By contrast, hypocotyl length increases and flowering time is delayed in direct proportion to the level of ZTL. We propose a novel testable mechanism by which circadian period and amplitude may act together to gate phytochrome B-mediated suppression of hypocotyl. We also demonstrate that ZTL-dependent delay of flowering is mediated through decreases in CONSTANS and FLOWERING LOCUS T message levels, thus directly linking proteasome-dependent proteolysis to flowering.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom