PAA1, a P-Type ATPase of Arabidopsis, Functions in Copper Transport in Chloroplasts
Author(s) -
Toshiharu Shikanai,
Patricia Müller-Moulé,
Yuri Munekage,
Krishiyogi,
Marinus Pilon
Publication year - 2003
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.011817
Subject(s) - plastocyanin , thylakoid , chloroplast , biology , electron transport chain , cytochrome b6f complex , photosynthesis , biochemistry , cytochrome f , mutant , photosystem i , atpase , arabidopsis thaliana , photosystem ii , biophysics , enzyme , gene
Copper (Cu) is an essential trace element with important roles as a cofactor in many plant functions, including photosynthesis. However, free Cu ions can cause toxicity, necessitating precise Cu delivery systems. Relatively little is known about Cu transport in plant cells, and no components of the Cu transport machinery in chloroplasts have been identified previously. Cu transport into chloroplasts provides the cofactor for the stromal enzyme copper/zinc superoxide dismutase (Cu/ZnSOD) and for the thylakoid lumen protein plastocyanin, which functions in photosynthetic electron transport from the cytochrome b(6)f complex to photosystem I. Here, we characterized six Arabidopsis mutants that are defective in the PAA1 gene, which encodes a member of the metal-transporting P-type ATPase family with a functional N-terminal chloroplast transit peptide. paa1 mutants exhibited a high-chlorophyll-fluorescence phenotype as a result of an impairment of photosynthetic electron transport that could be ascribed to decreased levels of holoplastocyanin. The paa1-1 mutant had a lower chloroplast Cu content, despite having wild-type levels in leaves. The electron transport defect of paa1 mutants was evident on medium containing <1 micro M Cu, but it was suppressed by the addition of 10 micro M Cu. Chloroplastic Cu/ZnSOD activity also was reduced in paa1 mutants, suggesting that PAA1 mediates Cu transfer across the plastid envelope. Thus, PAA1 is a critical component of a Cu transport system in chloroplasts responsible for cofactor delivery to plastocyanin and Cu/ZnSOD.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom