z-logo
open-access-imgOpen Access
Analysis of the ArabidopsisMADS AFFECTING FLOWERINGGene Family:MAF2Prevents Vernalization by Short Periods of Cold [W]
Author(s) -
Oliver J. Ratcliffe,
Roderick W. Kumimoto,
Becky J. Wong,
José Luis Riechmann
Publication year - 2003
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.009506
Subject(s) - vernalization , biology , arabidopsis , repressor , mads box , flowering locus c , genetics , gene , mutant , locus (genetics) , transcription factor
The Arabidopsis FLOWERING LOCUS C (FLC) gene is a key floral repressor in the maintenance of a vernalization response. In vernalization-sensitive genetic backgrounds, FLC levels are high, and they decline after exposure to long cold periods. Four FLC paralogs (MAF2 [MADS AFFECTING FLOWERING2] to MAF5) are arranged in a tandem array on the bottom of Arabidopsis chromosome V. We used a reverse genetics approach to analyze their functions. Loss-of-function and gain-of-function studies indicate that MAF2 acts as a floral repressor. In particular, maf2 mutant plants display a pronounced vernalization response when subjected to relatively short cold periods, which are insufficient to elicit a strong flowering response in the wild type, despite producing a large reduction in FLC levels. MAF2 expression is less sensitive to vernalization than that of FLC, and its repressor activity is exerted independently or downstream of FLC transcription. Thus, MAF2 can prevent premature vernalization in response to brief cold spells. Overexpression of MAF3 or MAF4 produces alterations in flowering time that suggest that these genes also act as floral repressors and might contribute to the maintenance of a vernalization requirement. However, the final gene in the cluster, MAF5, is upregulated by vernalization. Therefore, MAF5 could play an opposite role to FLC in the vernalization response.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom