z-logo
open-access-imgOpen Access
Genomic Analysis of the Unfolded Protein Response in Arabidopsis Shows Its Connection to Important Cellular Processes[W]
Author(s) -
Immaculada M. Martínez,
Maarten J. Chrispeels
Publication year - 2003
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.007609
Subject(s) - unfolded protein response , tunicamycin , biology , endoplasmic reticulum , gene , arabidopsis , secretory protein , microbiology and biotechnology , downregulation and upregulation , genetics , mutant
We analyzed the breadth of the unfolded protein response (UPR) in Arabidopsis using gene expression analysis with Affymetrix GeneChips. With tunicamycin and DTT as endoplasmic reticulum (ER) stress-inducing agents, we identified sets of UPR genes that were induced or repressed by both stresses. The proteins encoded by most of the upregulated genes function as part of the secretory system and comprise chaperones, vesicle transport proteins, and ER-associated degradation proteins. Most of the downregulated genes encode extracellular proteins. Therefore, the UPR may constitute a triple effort by the cell: to improve protein folding and transport, to degrade unwanted proteins, and to allow fewer secretory proteins to enter the ER. No single consensus response element was found in the promoters of the 53 UPR upregulated genes, but half of the genes contained response elements also found in mammalian UPR regulated genes. These elements are enriched from 4.5- to 15-fold in this upregulated gene set.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom