
Organization and Topology of Photosystem I Subunits
Author(s) -
April L. Zilber,
Richard Malkin
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.99.3.901
Subject(s) - thermolysin , pronase , protein subunit , cleavage (geology) , photosystem ii , trypsin , photosystem i , spinacia , thylakoid , chloroplast , biochemistry , spinach , membrane topology , biology , membrane , chemistry , stereochemistry , membrane protein , photosynthesis , enzyme , paleontology , fracture (geology) , gene
Intact spinach (Spinacia oleracea) thylakoid membranes were treated with various proteases and photosystem I (PSI) complexes were isolated from these membranes to define the membrane topology of specific PSI subunits. Trypsin treatment caused cleavage of the PSI-D and E subunits. Thermolysin treatment cleaved the PSI-D, E, H, and K subunits, and also caused limited degradation of the reaction center core PSI-A and B subunits. Pronase treatment produced the most dramatic results as the PSI-A and B subunits were cleaved to 47-, 45-, 26-, and 24-kilodalton products. In addition, pronase degraded the PSI-D, E, H, K, and L subunits. Proteolytic cleavage sites for several of the products were identified by amino acid sequencing. The results indicate that PSI-A, B, D, E, H, K, and L subunits all have stroma-exposed regions, and these findings are summarized in a model describing the subunit organization of PSI.