z-logo
open-access-imgOpen Access
Rhizobium nod Gene Inducers Exuded Naturally from Roots of Common Bean (Phaseolus vulgaris L.)
Author(s) -
Mariangela Hungría,
Cecillia M. Joseph,
Donald A. Phillips
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.97.2.759
Subject(s) - phaseolus , naringenin , rhizobium leguminosarum , eriodictyol , biology , nod , formononetin , botany , exudate , biochemistry , rhizobiaceae , chemistry , genistein , flavonoid , daidzein , gene , bacteria , genetics , symbiosis , antioxidant
Four compounds exuded from young roots of a black-seeded bean (Phaseolus vulgaris L., cv PI165426CS) induce transcription of nod genes in Rhizobium leguminosarum biovar phaseoli. The three most active nod gene inducers were identified by spectroscopic methods (ultraviolet/visible absorbance, proton nuclear magnetic resonance, and mass spectrometry) as being eriodictyol (5,7,3',4' -tetrahydroxyflavanone), naringenin (5,7,4' -trihydroxyflavanone), and a 7-O-glycoside of genistein (5,7,4' -trihydroxyisoflavone). Comparisons with authentic standards verified the chemical structures of the aglycones and their capacity to induce beta-galactosidase activity in R. leguminosarum strains containing nodA-lacZ or nodC-lacZ fusions controlled by R. leguminosarum biovar phaseoli nodD genes. Roots of 9-day-old seedlings released 42, 281, and 337 nanomoles per plant per day of genistein, eriodictyol, and naringenin, respectively. Genistein and naringenin induced higher maximum beta-galactosidase activities and required lower concentrations for half-maximum induction than eriodictyol. Comparing the nod gene-inducing activity of seed rinses with root exudate from PI165426CS bean showed that root flavonoids were released at about 6% the rate of those from seeds on a molar basis, but on average the individual compounds from roots were approximately three times more active than nod gene inducers from seeds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom