z-logo
open-access-imgOpen Access
Developmental Control of Crassulacean Acid Metabolism Inducibility by Salt Stress in the Common Ice Plant
Author(s) -
John C. Cushman,
Christine B. Michalowski,
Hans J. Bohnert
Publication year - 1990
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.94.3.1137
Subject(s) - crassulacean acid metabolism , mesembryanthemum crystallinum , phosphoenolpyruvate carboxylase , biology , halophyte , botany , photosynthesis , salinity , messenger rna , biochemistry , microbiology and biotechnology , gene , ecology
Ice plant (Mesembryanthemum crystallinum) is a facultative halophyte that responds to water stress in the form of drought or high salinity by switching from C(3) photosynthesis to Crassulacean acid metabolism (CAM), a physiological adaptation that increases water conservation. Although CAM is clearly environmentally controlled, and reversible upon removal of water stress, the competence to switch is developmentally determined. We have demonstrated this by measuring three parameters in the expression of a gene encoding a stress-specific isoform of a key enzyme of CAM, phosphoenolpyruvate carboxylase (PEPCase, Ppc1): (a) protein accumulation; (b) steady-state amounts of mRNA; and (3) transcriptional activity in isolated nuclei. Young plants (3 weeks of age) show little induction of PEPCase protein, mRNA, or transcription when stressed. In contrast, salt stress elicits a strong induction at all three levels of expression at 6 weeks of age. By 9 weeks of age, plants have already accumulated PEPCase protein and mRNA without being stressed. More importantly, transcriptional activation of Ppc1 by salt stress in 9-week-old plants is no longer observed despite an increase of both Ppc1 mRNA and protein. From these results we suggest that a developmental program exists that regulates PEPCase transcription and mRNA stability. This program appears to be synchronized with the climatic conditions in the plant's native environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom