
Identification and Partial Characterization of the Denaturation Transition of the Photosystem II Reaction Center of Spinach Chloroplast Membranes
Author(s) -
Karen Smith,
Philip S. Low
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.90.2.575
Subject(s) - spinach , photosystem ii , chloroplast , photosynthetic reaction centre , characterization (materials science) , membrane , chemistry , photosystem i , chloroplast membrane , biophysics , botany , photosystem , photosynthesis , biology , photochemistry , biochemistry , thylakoid , materials science , nanotechnology , gene
Sensitive differential scanning calorimetry was employed to investigate thylakoid membrane structure. Calorimetric scans of chloroplast membranes suspended in a low ionic strength Hepesbuffered medium revealed endothermic transitions centered at the following temperatures ( degrees C): A (42.5), B (60.6), C(1) (64.9), C(2) (69.6), D (75.8), E (84.3), and F (88.9). The B transition was demonstrated by several different methods to originate from denaturation of the photosystem II reaction center complex. Evidence for this conclusion is as follows: (a) the isolated reaction center complex denatures near the temperature of the B transition; (b) inorganic phosphate destablizes the isolated reaction center complex and the B endotherm to a similar extent; (c) heat inactivation of the photosystem II-mediated 1,5-diphenylcarbazide --> dichloroindophenol photoreaction occurs at the temperature of the B transition and is influenced in a manner similar to B by the presence of phosphate; (d) thermal gel analysis indicates that the 43 and 47 kilodalton polypeptides of the photosystem reaction center complex denature at the temperature of the B transition, both in the presence and absence of phosphate; (e) low temperature (77 Kelvin) fluorescence reveals that a change in photosystem II emission at 695 nanometers occurs during the B transition; and (f) ioxynil, a specific inhibitor of photosystem II, selectively stabilizes the B endotherm. With the identification of the B transition established, the origins of six of the eight major transitions of the chloroplast membrane have now been determined.