z-logo
open-access-imgOpen Access
Regulation of Transplasmalemma Electron Transport in Oat Mesophyll Cells by Sphingoid Bases and Blue Light
Author(s) -
Suranganee Dharmawardhane,
Bernard Rubinstein,
Arthur I. Stern
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.89.4.1345
Subject(s) - dcmu , redox , electron transport chain , biochemistry , chemistry , avena , ferricyanide , protein kinase a , photosynthesis , phosphorylation , biophysics , biology , botany , photosystem ii , organic chemistry
Long-chain sphingoid bases inhibit transplasmalemma electron transport in certain animal cells in part by inhibiting protein phosphorylation. As a first step in determining whether similar regulatory processes exist for cell surface redox activity in plants, peeled leaf segments of Avena sativa L. cv Garry were exposed to sphingoid bases and other long chain lipids. Sphingoid bases which are the most active inhibitors of protein kinase C in animal cells inhibit transplasmalemma electron transport by mesophyll cells in the dark as measured by reduction of exogenous ferricyanide. In white light, however, the same compounds markedly stimulate redox activity. The stimulation by sphingoid bases in the light is not eliminated by the inhibitor of photosynthesis, 3-(3,4-dichlorophenyl)-1,1 dimethylurea (DCMU). Redox activity remaining in the presence of DCMU and sphingoid bases can be observed in blue but not red light. A tentative hypothesis considering the involvement of two separate redox systems is presented in an attempt of explain the disparate action of sphingoid bases on electron transport across the plasmalemma.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom