Glyceraldehyde-3-Phosphate Dehydrogenase in Greening Zea mays L. Leaves
Author(s) -
Chin Ho Lin,
C. R. Stocking
Publication year - 1980
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.65.5.897
Subject(s) - etiolation , dehydrogenase , chloroplast , cycloheximide , glyceraldehyde 3 phosphate dehydrogenase , biochemistry , nicotinamide adenine dinucleotide phosphate , greening , enzyme assay , enzyme , biology , glyceraldehyde , protein biosynthesis , ecology , oxidase test , gene
Nicotinamide adenine dinucleotide phosphate (NADP)-dependent glyceraldehyde-3-phosphate dehydrogenase (GPDH) (EC 1.2.1.13), a chloroplast enzyme, had low activity in etioplasts of maize leaves. A light dependent increase of enzyme activity of 7-day-old etiolated seedlings showed a lag period of about 2.5 hours followed by a rapid increase in activity during the next 10 hours. The chlorophyll content followed a similar pattern of increasing concentration, but its formation was not directly related to NADP-GPDH formation. The specific activity of NADP-GPDH was lowest in the morphologically youngest tissue near the base of the lamina. The increase in NADP-GPDH was inhibited by cycloheximide but not by chloramphenicol. This indicates that at least some of the enzyme polypeptides are synthesized by 80S ribosomes in the cytoplasm, transported into chloroplasts and become active in chloroplasts. In etiolated maize shoots subjected to a combination of both 3-(p-chlorophenyl)-1,1-dimethylurea, monuron at 7 x 10(-5)m and far red light treatment for 15 hours, the NADP-GPDH activity increased 42% over the dark control compared to 70% increase for the light control. It is concluded that NADPH is not absolutely required for the activation of NADP-GPDH in maize leaves under physiological conditions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom