z-logo
open-access-imgOpen Access
Photocontrol of Anthocyanin Synthesis
Author(s) -
Alberto L. Mancinelli,
Isaac Rabino
Publication year - 1975
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.56.3.351
Subject(s) - phytochrome , far red , anthocyanin , irradiance , red cabbage , chemistry , botany , biology , red light , biophysics , horticulture , optics , physics
Under continuous far red light, anthocyanin synthesis in young, dark-grown cabbage seedlings (Brassica oleracea cv. Red Acre) is irradiance-dependent and fails to follow the reciprocity (irradiance x time = constant) relationships. Under intermittent far red treatments extended over a prolonged period of time, anthocyanin synthesis becomes dose dependent, and reciprocity relationships are valid. Intermittent far red treatments with short dark intervals between successive irradiations are as effective as continuous treatments, if the total radiation doses applied with the two types of treatments are equal and are applied over equally long periods of time. The high effectiveness of inter-mittent treatments, the dose dependence, and the validity of the reciprocity relationships suggest that cycling between red-absorbing form of phytochrome and far red-absorbing form of phytochrome and the formation of electronically excited far red-absorbing form of phytochrome, or the involvement of a second photoreactive system, besides phytochrome, may play only a minor role in high irradiance reaction anthocyanin synthesis brought about by prolonged exposures to far red irradiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom