Structural Development during Germination of Different Populations of Mitochondria from Pea Cotyledons
Author(s) -
S. S. Malhotra,
Mary S. Spencer
Publication year - 1973
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.52.6.575
Subject(s) - cycloheximide , chloramphenicol , mitochondrion , germination , biology , biochemistry , centrifugation , sucrose gradient , inner mitochondrial membrane , protein biosynthesis , botany , membrane , antibiotics
The crude mitochondrial fraction from pea cotyledons can, from days 1 to 7 of germination, be separated into three fractions by sucrose density gradient centrifugation. When seeds were grown in water (control) or cycloheximide (120 micrograms per milliliter of medium) for 4 days, the originally different populations of mitochondria acquired a uniform density and separated together in band 1 (density, 1.205 grams per milliliter). The oxidative and phosphorylative activities of mitochondria obtained from 4-day-old control and 4-day-old cycloheximide-treated pea seeds were the same. However, mitochondria from pea seeds that were grown in d-threo-chloramphenicol (1.5 milligrams per milliliter of medium) or erythromycin (0.5 milligram per milliliter of medium) for 4 days separate into three bands (fully developed mitochondria in the top band [band 1] and partially developed mitochondria in the lower two bands [bands 2 and 3]). Separation patterns and oxidative and phosphorylative activities were the same for mitochondria separated from 4-day-old cotyledons treated with d-threo-chloramphenicol or erythromycin and from 1-day-old cotyledons grown in water. This indicated that these inhibitors prevented the partially developed mitochondria originally in bands 2 and 3 from developing further. In contrast, cycloheximide did not seem to interfere with the mitochondrial structural development. These results along with those obtained from the experiments on the effects of d-threo-chloramphenicol, erthromycin, and cycloheximide on (14)C-leucine incorporation into mitochondrial membrane proteins suggest that the increase in mitochondrial activity during germination may be a result of structural development (membrane synthesis) in pre-existing mitochondria.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom