Physiology of Oil Seeds
Author(s) -
D. L. Ketring,
Page W. Morgan
Publication year - 1970
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.45.3.268
Subject(s) - biology , botany , physiology
The germination and ethylene production by dormant Virginia-type peanut seeds were observed in relation to phytohormone treatments that could conceivably release the dormancy of these seeds. A comparison was made between the effects of these treatments on the less dormant apical seeds and the more dormant basal seeds. Indole-3-acetic acid did not stimulate ethylene production by, or germination of, the dormant seeds to any extent. Gibberellic acid at 5 x 10(-4) M stimulated ethylene production by apical seeds to 17 millimicroliters per hour and germination to only 40% above the control. The more dormant basal seeds were affected even less by gibberellic acid than the seeds. Ethylene gas at 8 microliters per liter stimulated germination to 85% above the control for both apical and basal seeds. At this ethylene concentration the physiology of the more dormant basal seeds was altered, so that they behaved in a manner similar to the inherently less dormant apical seeds. 2-Chloroethylphosphonic acid at 10(-3) and 5 x 10(-4) M provided results similar to ethylene gas. Both apical and basal seeds germinated 100% at 48 hours. Among the phytohormones tested in this study, ethylene gas produced the greatest germination at low concentrations, and it appears must directly related to initiating the reactions required for converting the quiescent cells to an active state of growth.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom