Enzymic Degradation of Starch Granules in the Cotyledons of Germinating Peas
Author(s) -
Bienvenido O. Juliano,
Joseph E. Varner
Publication year - 1969
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.44.6.886
Subject(s) - starch , cotyledon , germination , amylase , glycogen phosphorylase , pisum , sativum , alpha amylase , enzyme , biochemistry , cycloheximide , chemistry , food science , biology , botany , protein biosynthesis
Starch, total alpha- and beta-amylase, and phosphorylase levels and the zymogram patterns of these 3 starch-degrading enzymes were determined in the cotyledons of smooth pea (Pisum sativum L.) during the first 15 days of germination. Starch is degraded slowly in the first 6 days; during this time, alpha-amylase is very low, beta-amylase is present at a constant level while phosphorylase gradually increases and reaches a peak on the fifth day. Beginning on the sixth day there is a more rapid degradation of starch which coincides with alpha-amylase production. One phosphorylase band and 2 beta-amylase bands are present in the zymogram of the imbibed cotyledon. An additional phosphorylase band and 1 alpha-amylase band appear during germination. Seeds imbibed in benzyladenine, chloramphenicol, and in cycloheximide show retarded growth and slower starch degradation and enzyme production than the controls. We conclude that alpha-amylase is the major enzyme involved in the initial degradation of starch into more soluble forms while phosphorylase and beta-amylase assist in the further conversion to free sugars.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom