
Oxidative Burst and Hypoosmotic Stress in Tobacco Cell Suspensions
Author(s) -
AnneClaire Cazalé,
Marie-Aude Rouet-Mayer,
Hélène BarbierBrygoo,
Yves Mathieu,
Christiane Laurière
Publication year - 1998
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.116.2.659
Subject(s) - respiratory burst , oxidative phosphorylation , nadph oxidase , nicotiana tabacum , oxidative stress , microbiology and biotechnology , biochemistry , reactive oxygen species , biology , extracellular , biophysics , chemistry , gene
Oxidative burst constitutes an early response in plant defense reactions toward pathogens, but active oxygen production may also be induced by other stimuli. The oxidative response of suspension-cultured tobacco (Nicotiana tabacum cv Xanthi) cells to hypoosmotic and mechanical stresses was characterized. The oxidase involved in the hypoosmotic stress response showed similarities by its NADPH dependence and its inhibition by iodonium diphenyl with the neutrophil NADPH oxidase. Activation of the oxidative response by hypoosmotic stress needed protein phosphorylation and anion effluxes, as well as opening of Ca2+ channels. Inhibition of the oxidative response impaired Cl- efflux, K+ efflux, and extracellular alkalinization, suggesting that the oxidative burst may play a role in ionic flux regulation. Active oxygen species also induced the cross-linking of a cell wall protein, homologous to a soybean (Glycine max L.) extensin, that may act as part of cell volume and turgor regulation through modification of the physical properties of the cell wall.