In Vivo and in Vitro Phosphorylation of the Phosphoenolpyruvate Carboxylase from Wheat Seeds during Germination
Author(s) -
L. Osuna,
María Cruz González,
Francisco Javier Cejudo,
J. Vidal,
Cristina Echevarrı́a
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.111.2.551
Subject(s) - phosphoenolpyruvate carboxylase , imbibition , aleurone , phosphorylation , endosperm , biochemistry , biology , germination , protein phosphorylation , caryopsis , protein kinase a , enzyme , botany
Phosphoenolpyruvate carboxylase (PEPC) activity was detected in the aleurone endosperm of wheat (Triticum aestivum cv Chinese Spring) seeds, and specific anti-Sorghum C4 PEPC polyclonal anti-bodies cross-reacted with 103- and 100-kD polypeptides present in dry seeds and seeds that had imbibed; in addition, a new, 108-kD polypeptide was detected 6 h after imbibition. The use of specific anti-phosphorylation-site immunoglobulin G (APS-IgG) identified the presence of a phosphorylation motif equivalent to that found in other plant PEPCs studied so far. The binding of this APS-IgG to the target protein promoted changes in the properties of seed PEPC similar to those produced by phosphorylation, as previously shown for the recombinant Sorghum leaf C4 PEPC. In desalted seed extracts, an endogenous PEPC kinase activity catalyzed a bona fide phosphorylation of the target protein, as deduced from the immunoinhibition of the in vitro phosphorylation reaction by the APS- IgG. In addition, the major, 103-kD PEPC polypeptide was also shown to be radiolabeled in situ 48 h after imbibition in [32P]orthophosphate. The ratio between optimal (pH 8) and suboptimal (pH 7.3 or 7.1) PEPC activity decreased during germination, thereby suggesting a change in catalytic rate related to an in vivo phosphorylation process. These collective data document that the components needed for the regulatory phosphorylation of PEPC are present and functional during germination of wheat seeds.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom