z-logo
open-access-imgOpen Access
Molybdenum Cofactor Mutants, Specifically Impaired in Xanthine Dehydrogenase Activity and Abscisic Acid Biosynthesis, Simultaneously Overexpress Nitrate Reductase
Author(s) -
M.T. Leydecker,
Thérèse Moureaux,
Yvan Kraepiel,
Kirk Schnorr,
Michel Caboche
Publication year - 1995
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.107.4.1427
Subject(s) - aldehyde oxidase , molybdenum cofactor , xanthine dehydrogenase , nitrate reductase , abscisic acid , biochemistry , cofactor , biosynthesis , mutant , xanthine oxidase , chemistry , dehydrogenase , enzyme , reductase , oxidase test , gene
The molybdenum cofactor is shared by nitrate reductase (NR), xanthine dehydrogenase (XDH), and abscisic acid (ABA) aldehyde oxidase in higher plants (M. Walker-Simmons, D.A. Kudrna, R.L. Warner [1989] Plant Physiol 90:728-733). In agreement with this, cnx mutants are simultaneously deficient for these three enzyme activities and have physiological characteristics of ABA-deficient plants. In this report we show that aba1 mutants, initially characterized as ABA-deficient mutants, are impaired in both ABA aldehyde oxidase and XDH activity but overexpress NR. These characteristics suggest that aba1 is in fact involved in the last step of molybdenum cofactor biosynthesis specific to XDH and ABA aldehyde oxidase; aba1 probably has the same function as hxB in Aspergillus. The significance of NR overexpression in aba1 mutants is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom