The 14-3-3 Proteins μ and υ Influence Transition to Flowering and Early Phytochrome Response
Author(s) -
John D. Mayfield,
Kevin M. Folta,
AnnaLisa Paul,
Robert J. Ferl
Publication year - 2007
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.107.108654
Subject(s) - phytochrome , biology , phytochrome a , mutant , hypocotyl , photoperiodism , gene isoform , phenotype , arabidopsis thaliana , microbiology and biotechnology , arabidopsis , immunoprecipitation , regulator , blue light , botany , genetics , gene , red light , physics , optics
14-3-3 proteins regulate a diverse set of biological responses but developmental phenotypes associated with 14-3-3 mutations have not been described in plants. Here, physiological and biochemical tests demonstrate interactions between 14-3-3s and the well-established mechanisms that govern light sensing and photoperiodic flowering control. Plants featuring homozygous disruption of 14-3-3 isoforms upsilon and mu display defects in light sensing and/or response. Mutant plants flower late and exhibit long hypocotyls under red light, with little effect under blue or far-red light. The long hypocotyl phenotype is consistent with a role for 14-3-3 upsilon and mu in phytochrome B signaling. Yeast two-hybrid and coimmunoprecipitation assays indicate that 14-3-3 upsilon and mu proteins physically interact with CONSTANS, a central regulator of the photoperiod pathway. Together, these data indicate a potential role for specific 14-3-3 isoforms in affecting photoperiodic flowering via interaction with CONSTANS, possibly as integrators of light signals sensed through the phytochrome system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom