Molecular Characterization of PAB2, a Member of the Multigene Family Coding for Poly(A)-Binding Proteins in Arabidopsis thaliana
Author(s) -
Pierre Hilson,
Kathleen L. Carroll,
Patrick Masson
Publication year - 1993
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.2.525
Subject(s) - biology , arabidopsis thaliana , arabidopsis , gene , rna recognition motif , genetics , coding region , conserved sequence , amino acid , peptide sequence , nucleic acid sequence , sequence alignment , gene family , protein family , function (biology) , biochemistry , rna binding protein , rna , gene expression , mutant
The poly(A) tail of eukaryotic mRNAs associates with poly(A)-binding (PAB) proteins whose role in mRNA translation and stability is being intensively investigated. Very little is known about the structure and function of the PAB genes in plants. We have cloned multiple PAB-related sequences from Arabidopsis thaliana. Results suggest that PAB proteins are encoded by a multigene family. One member of this family (PAB2) is expressed in root and shoot tissues. The complete nucleotide sequence of PAB2 was determined. Study of the predicted PAB2 protein reveals a similarity in structure among vertebrate, insect, yeast, and plant PAB proteins. All contain two highly conserved domains: an amino-terminal sequence formed by four RNA recognition motifs and an uncharacterized carboxyl-terminal region of 69 to 71 amino acids. Possible roles for the carboxyl-terminal conserved domain are discussed in view of recently published data concerning the structure and function of PAB proteins.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom