z-logo
open-access-imgOpen Access
Phosphatidate Kinase, a Novel Enzyme in Phospholipid Metabolism (Purification, Subcellular Localization, and Occurrence in the Plant Kingdom)
Author(s) -
Josef Wissing,
H. Behrbohm
Publication year - 1993
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.102.4.1243
Subject(s) - catharanthus roseus , phosphatidate , phosphatidic acid , biochemistry , diacylglycerol kinase , phospholipid , membrane , enzyme , kinase , biology , chemistry , protein kinase c
Microsomal membranes from suspension-cultured Catharanthus roseus cells possess an enzymic activity that catalyzes the ATP-dependent phosphorylation of phosphatidic acid (PA) to form diacylglycerol pyrophosphate (H. Behrbohm, J.B. Wissing [1993] FEBS Lett 315: 95-99). This enzyme activity, PA kinase, was purified and characterized. Plasma membranes, obtained from C. roseus microsomes by aqueous two-phase partitioning, were extracted, and PA kinase was purified 3200-fold by applying different chromatographic steps that resulted in a specific activity of about 10 [mu]mol min-1 mg-1. Sodium dodecyl sulfate-gel electrophoresis of the fractions obtained from the final chromatographic step revealed a 39-kD protein that correlated with the enzyme activity; PA kinase activity could be eluted from this protein band. Subcellular localization, investigated with C. roseus cells, showed that the activity was confined to membrane fractions, and at least 80% was associated with plasma membranes. The data revealed the same distribution within the cellular membranes of PA kinase as reported for diacylglycerol kinase, which is a typical plasma membrane-located enzyme. Furthermore, PA kinase activity was detected in the calli of 16 different plant species and in the different organs of C. roseus plants and obviously occurs ubiquitously in the plant kingdom.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom