z-logo
open-access-imgOpen Access
Forced Molecular Rotation in an Optical Centrifuge
Author(s) -
D. M. Villeneuve,
S. A. Aseyev,
Peter Dietrich,
M. Spanner,
Misha Ivanov,
P. B. Corkum
Publication year - 2000
Publication title -
physical review letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.688
H-Index - 673
eISSN - 1079-7114
pISSN - 0031-9007
DOI - 10.1103/physrevlett.85.542
Subject(s) - molecule , femtosecond , dipole , atomic physics , polarization (electrochemistry) , rotation (mathematics) , spinning , laser , physics , anisotropy , molecular physics , optical rotation , centrifuge , angular momentum , materials science , optics , classical mechanics , chemistry , quantum mechanics , geometry , mathematics , composite material
Intense linearly polarized light induces a dipole force that aligns an anisotropic molecule to the direction of the field polarization. Rotating the polarization causes the molecule to rotate. Using femtosecond laser technology, we accelerate the rate of rotation from 0 to 6 THz in 50 ps, spinning chlorine molecules from near rest up to angular momentum states J approximately 420. At the highest spinning rate, the molecular bond is broken and the molecule dissociates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom