
Magnetization and Microstructure Dynamics in Fe / MnAs / GaAs ( 001 ) : Fe Magnetization Reversal by a Femtosecond Laser Pulse
Author(s) -
C. Spezzani,
Eugenio Ferrari,
E. Allaria,
Franck Vidal,
Alessandra Ciavardini,
Renaud Delaunay,
Flavio Capotondi,
Emanuele Pedersoli,
Marcello Coreno,
Cristian Svetina,
Lorenzo Raimondi,
Marco Zangrando,
Rosen Ivanov,
Ivaylo Nikolov,
Alexander Demidovich,
M. B. Danailov,
Horia Popescu,
M. Eddrief,
G. De Ninno,
М. Кискинова,
M. Sacchi
Publication year - 2014
Publication title -
physical review letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.688
H-Index - 673
eISSN - 1079-7114
pISSN - 0031-9007
DOI - 10.1103/physrevlett.113.247202
Subject(s) - magnetization , microstructure , physics , materials science , crystallography , chemistry , magnetic field , quantum mechanics
International audienceThin film magnetization reversal without applying external fields is an attractive perspective for applications in sensors and devices. One way to accomplish it is by fine-tuning the microstructure of a magnetic substrate via temperature control, as in the case of a thin Fe layer deposited on a MnAs/GaAs(001) template. This work reports a time-resolved resonant scattering study exploring the magnetic and structural properties of the Fe/MnAs system, using a 100 fs optical laser pulse to trigger local temperature variations and a 100 fs x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics. The experiment provides direct evidence that a single optical laser pulse can reverse the Fe magnetization locally. It reveals that the time scale of the magnetization reversal is slower than that of the MnAs structural transformations triggered by the optical pulse, which take place after a few picoseconds already