
Frustrated Resonating Valence Bond States in Two Dimensions: Classification and Short-Range Correlations
Author(s) -
Fan Yang,
Hong Yao
Publication year - 2012
Publication title -
physical review letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.688
H-Index - 673
eISSN - 1079-7114
pISSN - 0031-9007
DOI - 10.1103/physrevlett.109.147209
Subject(s) - generalized valence bond , valence (chemistry) , range (aeronautics) , valence bond theory , materials science , physics , condensed matter physics , statistical physics , nuclear physics , quantum mechanics , electron , atomic orbital , composite material
Resonating valence bond (RVB) states are of crucial importance in our intuitive understanding of quantum spin liquids in 2D. We systematically classify short-range bosonic RVB states into symmetric or nematic spin liquids by examining their flux patterns. We further map short-range bosonic RVB states into projected BCS wave functions, on which we perform large-scale Monte Carlo simulations without the minus sign problem. Our results clearly show that both spin and dimer correlations decay exponentially in all the short-range frustrated (nonbipartite or Z2) bosonic RVB states we studied, indicating that they are gapped Z2 quantum spin liquids. Generically, we conjecture that all short-range frustrated bosonic RVB states in 2D have only short-range correlations.