z-logo
open-access-imgOpen Access
Deep learning forin situdata compression of large turbulent flow simulations
Author(s) -
Andrew Glaws,
Ryan King,
Michael Sprague
Publication year - 2020
Publication title -
physical review fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 37
eISSN - 2469-9918
pISSN - 2469-990X
DOI - 10.1103/physrevfluids.5.114602
Subject(s) - turbulence , autoencoder , compression (physics) , enstrophy , computer science , singular value decomposition , flow (mathematics) , turbulence kinetic energy , reynolds number , deep learning , artificial intelligence , mechanics , physics , vorticity , thermodynamics , vortex

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom