z-logo
open-access-imgOpen Access
Effect of Co and Ni substitution on the two magnetostructural phase transitions inFe1.12Te
Author(s) -
Cevriye Koz,
Sahana Rößler,
Alexander A. Tsirlin,
Ceren Zor,
Gerçek Armağan,
S. Wirth,
Ulrich Schwarz
Publication year - 2016
Publication title -
physical review. b./physical review. b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.78
H-Index - 465
eISSN - 2469-9969
pISSN - 2469-9950
DOI - 10.1103/physrevb.93.024504
Subject(s) - tetragonal crystal system , antiferromagnetism , orthorhombic crystal system , monoclinic crystal system , materials science , condensed matter physics , crystallography , order (exchange) , superconductivity , phase transition , magnetization , physics , crystal structure , chemistry , magnetic field , quantum mechanics , finance , economics
Here we present the results of high-resolution x-ray diffraction experiments along with specific heat, resistivity, and magnetization measurements of chemically well-characterized Fe1.12-xMx Te (M = Co, Ni) samples. The motivation is to investigate how the two coupled magnetostructural phase transitions in the antiferromagnetic parent compound Fe1.12Te of chalcogenide superconductors can be tuned. While the two-step magnetostructural transition (tetragonal-to-orthorhombic followed by orthorhombic-to-monoclinic) persists in Fe1.10Co0.02Te, only one, tetragonal-to-orthorhombic transition was observed in Fe1.10Ni0.02Te. Upon increasing the Co and Ni substitution, the structural phase transitions and the long-range magnetic order are systematically suppressed without any sign of superconductivity. For high substitution levels (x >= 0.05), a spin-glass-like behavior was observed and the low-temperature structure remains tetragonal. From our results, it can be inferred that the electron doping strongly suppresses the magnetostructural phase transitions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom