z-logo
open-access-imgOpen Access
Theory of orthogonal interactions of CO molecules on a one-dimensional substrate
Author(s) -
Chungwei Lin,
Min Feng,
Jin Zhao,
Pepa Cabrera-Sanfélix,
A. Arnau,
Daniel SánchezPortal,
Hrvoje Petek
Publication year - 2012
Publication title -
physical review b
Language(s) - English
Resource type - Journals
eISSN - 1538-4489
pISSN - 1098-0121
DOI - 10.1103/physrevb.85.125426
Subject(s) - chemisorption , density functional theory , molecule , surface (topology) , substrate (aquarium) , electronic structure , materials science , anisotropy , atom (system on chip) , adsorption , chemical physics , atomic orbital , molecular physics , physics , condensed matter physics , quantum mechanics , chemistry , geometry , electron , computer science , mathematics , oceanography , embedded system , geology
A minimal model based on density-functional theory is proposed and solved to explain the unusual chemisorption properties of carbon-monooxide (CO) molecules on Cu(110)-(2 × 1)-O quasi-one-dimensional (1D) surface reported in Feng. The striking features of CO adsorption include (1) the strong lifting of the host Cu atom by 1 Å, and (2) the highly anisotropic CO-CO interaction leading to self-assembly into a nanograting structure. Our model implies that the 1D nature of the surface band is the key to these two features. We illustrate how formation of a chemical bond through specific orbital interactions between an adsorbate and 1D dispersive states of the substrate can impact the surface geometrical and electronic structure. © 2012 American Physical Society.We thank DOE-BES Division of Chemical Sciences, Geosciences, and Biosciences for support through Grant No. DE-FG02-09ER16056, W. M. Keck foundation, Ministerio de Ciencia e Innovación (Grant No. FIS2010-19609-C02-00) and G.V.-UPV/EHU (Grant No. IT-366-07) for financial support.Peer Reviewe

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom