
Topological control of magnetic textures
Author(s) -
Hanu Arava,
Frank Barrows,
Mark D. Stiles,
Amanda K. PetfordLong
Publication year - 2021
Publication title -
physical review. b./physical review. b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.78
H-Index - 465
eISSN - 2469-9969
pISSN - 2469-9950
DOI - 10.1103/physrevb.103.l060407
Subject(s) - permalloy , topology (electrical circuits) , nanomagnet , magnetic field , winding number , physics , texture (cosmology) , computer science , mathematics , magnetization , quantum mechanics , artificial intelligence , image (mathematics) , mathematical analysis , combinatorics
A micromagnetic study is carried out on the role of using topology to stabilize different magnetic textures, such as a vortex or an anti-vortex state, in a magnetic heterostructure consisting of a Permalloy disk coupled to a set of nanomagnetic bars. The topological boundary condition is set by the stray field contributions of the nanomagnet bars and thus by their magnetization configuration, and can be described by a discretized winding number that will be matched by the winding number of the topological state set in the disk. The lowest number of nanomagnets that defines a suitable boundary is four, and we identify a critical internanomagnet angle of 225° between two nanomagnets, at which the boundary fails because the winding number of the nanomagnet configuration no longer controls that of the disk magnetization. The boundary also fails when the disk-nanomagnets separation is > 50 nm and for disk diameters > 480 nm. Finally, we provide preliminary experimental evidence from magnetic force microscopy studies in which we demonstrate that an energetically unstable, anti-vortex-like structure can indeed be stabilized in a Permalloy disk, provided that the appropriate topological conditions are set.