z-logo
open-access-imgOpen Access
Development of a deep machine learning interatomic potential for metalloid-containing Pd-Si compounds
Author(s) -
Tongqi Wen,
CaiZhuang Wang,
M. J. Kramer,
Yang Sun,
Beilin Ye,
Haidi Wang,
XueYuan Liu,
Chao Zhang,
Feng Zhang,
KaiMing Ho,
Nan Wang
Publication year - 2019
Publication title -
physical review. b./physical review. b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.78
H-Index - 465
eISSN - 2469-9969
pISSN - 2469-9950
DOI - 10.1103/physrevb.100.174101
Subject(s) - interatomic potential , atom (system on chip) , ground state , molecular dynamics , physics , artificial neural network , density functional theory , machine learning , crystallography , algorithm , materials science , atomic physics , computer science , chemistry , quantum mechanics , embedded system

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom