Auxin-Regulated Lateral Root Organogenesis
Author(s) -
Nicola Cavallari,
Christina Artner,
Eva Benková
Publication year - 2021
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a039941
Subject(s) - biology , auxin , organogenesis , lateral root , root (linguistics) , compensatory growth (organ) , function (biology) , root system , microbiology and biotechnology , flexibility (engineering) , endogeny , plant hormone , plant development , botany , arabidopsis , biochemistry , genetics , mutant , linguistics , philosophy , statistics , mathematics , gene , kidney
Plant fitness is largely dependent on the root, the underground organ, which, besides its anchoring function, supplies the plant body with water and all nutrients necessary for growth and development. To exploit the soil effectively, roots must constantly integrate environmental signals and react through adjustment of growth and development. Important components of the root management strategy involve a rapid modulation of the root growth kinetics and growth direction, as well as an increase of the root system radius through formation of lateral roots (LRs). At the molecular level, such a fascinating growth and developmental flexibility of root organ requires regulatory networks that guarantee stability of the developmental program but also allows integration of various environmental inputs. The plant hormone auxin is one of the principal endogenous regulators of root system architecture by controlling primary root growth and formation of LR. In this review, we discuss recent progress in understanding molecular networks where auxin is one of the main players shaping the root system and acting as mediator between endogenous cues and environmental factors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom