z-logo
open-access-imgOpen Access
Capturing Stem Cell Behavior Using Intravital and Live Cell Microscopy
Author(s) -
Arianna Fumagalli,
Lotte Bruens,
Colinda L. G. J. Scheele,
Jacco van Rheenen
Publication year - 2019
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a035949
Subject(s) - biology , intravital microscopy , stem cell , microbiology and biotechnology , cell , microscopy , pathology , biochemistry , medicine , in vivo
Stem cells maintain tissue homeostasis by driving cellular turnover and regeneration upon damage. They reside within specialized niches that provide the signals required for stem cell maintenance. Stem cells have been identified in many tissues and cancer types, but their behavior within the niche and their reaction to microenvironmental signals were inferred from limited static observations. Recent advances in live imaging techniques, such as live cell imaging and intravital microscopy, have allowed the visualization of stem cell behavior and dynamics over time in their (near) native environment. Through these recent technological advances, it is now evident that stem cells are much more dynamic than previously anticipated, resulting in a model in which stemness is a state that can be gained or lost over time. In this review, we will highlight how live imaging and intravital microscopy have unraveled previously unanticipated stem cell dynamics and plasticity during development, homeostasis, regeneration, and tumor formation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom