z-logo
open-access-imgOpen Access
Coming Together: RNAs and Proteins Assemble under the Single-Molecule Fluorescence Microscope
Author(s) -
Ameya P. Jalihal,
Paul E. Lund,
Nils G. Walter
Publication year - 2019
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a032441
Subject(s) - biomedicine , biology , fluorescence microscope , library science , fluorescence , bioinformatics , computer science , optics , physics
RNAs, across their numerous classes, often work in concert with proteins in RNA-protein complexes (RNPs) to execute critical cellular functions. Ensemble-averaging methods have been instrumental in revealing many important aspects of these RNA-protein interactions, yet are insufficiently sensitive to much of the dynamics at the heart of RNP function. Single-molecule fluorescence microscopy (SMFM) offers complementary, versatile tools to probe RNP conformational and compositional changes in detail. In this review, we first outline the basic principles of SMFM as applied to RNPs, describing key considerations for labeling, imaging, and quantitative analysis. We then sample applications of in vitro and in vivo single-molecule visualization using the case studies of pre-messenger RNA (mRNA) splicing and RNA silencing, respectively. After discussing specific insights single-molecule fluorescence methods have yielded, we briefly review recent developments in the field and highlight areas of anticipated growth.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom