z-logo
open-access-imgOpen Access
Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals
Author(s) -
Pablo E. Jercog,
Thomas Rogerson,
Mark J. Schnitzer
Publication year - 2016
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a021824
Subject(s) - neuroscience , biology , memory formation , calcium imaging , encode , information processing , long term memory , computer science , calcium , hippocampus , cognition , genetics , gene , chemistry , organic chemistry
During long-term memory formation, cellular and molecular processes reshape how individual neurons respond to specific patterns of synaptic input. It remains poorly understood how such changes impact information processing across networks of mammalian neurons. To observe how networks encode, store, and retrieve information, neuroscientists must track the dynamics of large ensembles of individual cells in behaving animals, over timescales commensurate with long-term memory. Fluorescence Ca(2+)-imaging techniques can monitor hundreds of neurons in behaving mice, opening exciting avenues for studies of learning and memory at the network level. Genetically encoded Ca(2+) indicators allow neurons to be targeted by genetic type or connectivity. Chronic animal preparations permit repeated imaging of neural Ca(2+) dynamics over multiple weeks. Together, these capabilities should enable unprecedented analyses of how ensemble neural codes evolve throughout memory processing and provide new insights into how memories are organized in the brain.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom