z-logo
open-access-imgOpen Access
Approaching the Next Revolution? Evolutionary Integration of Neural and Immune Pathogen Sensing and Response: Figure 1.
Author(s) -
Kevin J. Tracey
Publication year - 2014
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a016360
Subject(s) - biology , pathogen , immune system , cognitive science , evolutionary biology , immunology , psychology
Mammalian immunity evolved by the process of natural selection that produced differential survival and reproduction advantages through combinations of hereditary traits underlying the response to pathogens. Primitive animals sense the presence of microbial pathogens through recognition of pathogen-derived molecules in their rudimentary immune and nervous systems. No molecular biological mechanism assigns primacy of pathogen sensing mechanisms to immune cells over neurons. Rather, in animals as diverse as Caenorhabditis elegans to mammals, neural reflexes are activated by the presence of pathogens and transduce neural mechanisms that control the development of immunity. A coming revolution in immunological thinking will require immunologists to incorporate neural circuits into understanding pathogen signal transduction, and the molecular mechanisms of learning, that culminate in immunity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom