The Endolysosomal System in Cell Death and Survival
Author(s) -
Urška Repnik,
Maruša Hafner Česen,
Boris Turk
Publication year - 2013
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a008755
Subject(s) - endocytic cycle , microbiology and biotechnology , biology , proteases , autophagy , cytosol , endosome , organelle , programmed cell death , lysosome , signal transduction , apoptosis , cell signaling , endocytosis , cell , biochemistry , intracellular , enzyme
The endocytic pathway is a system specialized for the uptake of compounds from the cell microenvironment for their degradation. It contains an arsenal of hydrolases, including proteases, which are normally enclosed in membrane-bound organelles, but if released to the cytosol can initiate apoptosis signaling pathways. Endogenous and exogenous compounds have been identified that can mediate destabilization of lysosomal membranes, and it was shown that lysosomal proteases are not only able to initiate apoptotic signaling but can also amplify the apoptotic pathways initiated in other cellular compartments. The endocytic pathway also receives cargo destined for degradation via the autophagic pathway. By recycling energy and biosynthetic substrates, and by degrading damaged organelles and molecules, the endocytic system assists the autophagic system in resisting apoptotic stimuli. Steps leading to lysosomal membrane permeabilization and subsequent triggering of cell death as well as the therapeutic potential of intervention in lysosomal membrane permeabilization will be discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom