z-logo
open-access-imgOpen Access
Signaling Mechanisms Controlling Cell Fate and Embryonic Patterning
Author(s) -
Norbert Perrimon,
Chrysoula Pitsouli,
BenZion Shilo
Publication year - 2012
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a005975
Subject(s) - morphogen , biology , wnt signaling pathway , fibroblast growth factor , hedgehog , bone morphogenetic protein , signal transduction , microbiology and biotechnology , notch signaling pathway , juxtacrine signalling , cell fate determination , embryonic stem cell , cell signaling , developmental biology , transcription factor , genetics , paracrine signalling , receptor , gene
During development, signaling pathways specify cell fates by activating transcriptional programs in response to extracellular signals. Extensive studies in the past 30 years have revealed that surprisingly few pathways exist to regulate developmental programs and that dysregulation of these can lead to human diseases, including cancer. Although these pathways use distinct signaling components and signaling strategies, a number of common themes have emerged regarding their organization and regulation in time and space. Examples from Drosophila, such as Notch, Hedgehog, Wingless/WNT, BMP (bone morphogenetic proteins), EGF (epidermal growth factor), and FGF (fibroblast growth factor) signaling, illustrate their abilities to act either at a short range or over a long distance, and in some instances to generate morphogen gradients that pattern fields of cells in a concentration-dependent manner. They also show how feedback loops and transcriptional cascades are part of the logic of developmental regulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom