z-logo
open-access-imgOpen Access
Regulation of Cholesterol and Fatty Acid Synthesis
Author(s) -
J. Ye,
Russell A. DeBoseBoyd
Publication year - 2011
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a004754
Subject(s) - sterol regulatory element binding protein , biology , endoplasmic reticulum , biochemistry , transcription factor , microbiology and biotechnology , proteolysis , fatty acid , cholesterol , sterol , gene , enzyme
In mammals, intracellular levels of cholesterol and fatty acids are controlled through a feedback regulatory system mediated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs). SREBPs are synthesized as inactive precursors bound to membranes of the endoplasmic reticulum. When cells are deprived of cholesterol and fatty acids, NH(2)-terminal fragments of SREBPs become proteolytically released from membranes and migrate to the nucleus to activate transcription of genes required for lipid synthesis and uptake. Conversely, lipid repletion inhibits proteolytic processing of SREBPs and thereby suppresses lipid accumulation. We review here studies in cultured cells that reveal the mechanism for regulation of SREBP proteolytic activation, and those in animal models in which SREBP proteolysis has been either activated or inhibited to show the essential role of SREBPs in regulating hepatic lipid homeostasis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom