z-logo
open-access-imgOpen Access
The Diversity of Calcium Sensor Proteins in the Regulation of Neuronal Function
Author(s) -
Hannah V. McCue,
Lee P. Haynes,
Robert D. Burgoyne
Publication year - 2010
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a004085
Subject(s) - biology , calmodulin , neurotransmitter , neuroscience , calcium signaling , microbiology and biotechnology , signal transduction , axon , premovement neuronal activity , calcium , cell type , function (biology) , cell , central nervous system , medicine , biochemistry , enzyme
Calcium signaling in neurons as in other cell types mediates changes in gene expression, cell growth, development, survival, and cell death. However, neuronal Ca(2+) signaling processes have become adapted to modulate the function of other important pathways including axon outgrowth and changes in synaptic strength. Ca(2+) plays a key role as the trigger for fast neurotransmitter release. The ubiquitous Ca(2+) sensor calmodulin is involved in various aspects of neuronal regulation. The mechanisms by which changes in intracellular Ca(2+) concentration in neurons can bring about such diverse responses has, however, become a topic of widespread interest that has recently focused on the roles of specialized neuronal Ca(2+) sensors. In this article, we summarize synaptotagmins in neurotransmitter release, the neuronal roles of calmodulin, and the functional significance of the NCS and the CaBP/calneuron protein families of neuronal Ca(2+) sensors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom