Riboswitches: Structures and Mechanisms
Author(s) -
Andrew D. Garst,
A L Edwards,
Robert Batey
Publication year - 2010
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a003533
Subject(s) - riboswitch , biology , computational biology , rna , untranslated region , regulation of gene expression , mechanism (biology) , non coding rna , transcriptional regulation , regulatory sequence , microrna , nucleic acid structure , gene expression , genetics , microbiology and biotechnology , gene , philosophy , epistemology
A critical feature of the hypothesized RNA world would have been the ability to control chemical processes in response to environmental cues. Riboswitches present themselves as viable candidates for a sophisticated mechanism of regulatory control in RNA-based life. These regulatory elements in the modern world are most commonly found in the 5'-untranslated regions of bacterial mRNAs, directly interacting with metabolites as a means of regulating expression of the coding region via a secondary structural switch. In this review, we focus on recent insights into how these RNAs fold into complex architectures capable of both recognizing a specific small molecule compound and exerting regulatory control over downstream sequences, with an emphasis on transcriptional regulation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom