Physiology and Function of the Tight Junction
Author(s) -
James M. Anderson,
Christina M. Van Itallie
Publication year - 2009
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a002584
Subject(s) - claudin , tight junction , biology , paracellular transport , barrier function , microbiology and biotechnology , transmembrane protein , function (biology) , biophysics , genetics , receptor , permeability (electromagnetism) , membrane
Understanding of tight junctions has evolved from their historical perception as inert solute barriers to recognition of their physiological and biochemical complexity. Many proteins are specifically localized to tight junctions, including cytoplasmic actin-binding proteins and adhesive transmembrane proteins. Among the latter are claudins, which are critical barrier proteins. Current information suggests that the paracellular barrier is most usefully modeled as having two physiologic components: a system of charge-selective small pores, 4 A in radius, and a second pathway created by larger discontinuities in the barrier, lacking charge or size discrimination. The first pathway is influenced by claudin expression patterns and the second is likely controlled by different proteins and signals. Recent information on claudin function and disease-causing mutations have led to a more complete understanding of their role in barrier formation, but progress is impeded by lack of high resolution structural information.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom