The Hadean-Archaean Environment
Author(s) -
Norman H. Sleep
Publication year - 2010
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a002527
Subject(s) - hadean , archean , geology , early earth , subduction , earth science , craton , crust , oceanic crust , geochemistry , mantle (geology) , bay , weathering , geologic record , astrobiology , paleontology , oceanography , biology , tectonics
A sparse geological record combined with physics and molecular phylogeny constrains the environmental conditions on the early Earth. The Earth began hot after the moon-forming impact and cooled to the point where liquid water was present in approximately 10 million years. Subsequently, a few asteroid impacts may have briefly heated surface environments, leaving only thermophile survivors in kilometer-deep rocks. A warm 500 K, 100 bar CO(2) greenhouse persisted until subducted oceanic crust sequestered CO(2) into the mantle. It is not known whether the Earth's surface lingered in a approximately 70 degrees C thermophile environment well into the Archaean or cooled to clement or freezing conditions in the Hadean. Recently discovered approximately 4.3 Ga rocks near Hudson Bay may have formed during the warm greenhouse. Alkalic rocks in India indicate carbonate subduction by 4.26 Ga. The presence of 3.8 Ga black shales in Greenland indicates that S-based photosynthesis had evolved in the oceans and likely Fe-based photosynthesis and efficient chemical weathering on land. Overall, mantle derived rocks, especially kimberlites and similar CO(2)-rich magmas, preserve evidence of subducted upper oceanic crust, ancient surface environments, and biosignatures of photosynthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom