The Cytoskeleton Coordinates the Early Events of B-cell Activation
Author(s) -
Naomi E. Harwood,
Facundo D. Batista
Publication year - 2010
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a002360
Subject(s) - immunological synapse , biology , internalization , microbiology and biotechnology , b cell receptor , breakpoint cluster region , b cell , intracellular , cytoskeleton , signal transduction , antigen , cell signaling , cd19 , acquired immune system , antigen presentation , t cell , cell , immune system , receptor , antibody , immunology , t cell receptor , genetics
B cells contribute to protective adaptive immune responses through generation of antibodies and long-lived memory cells, following engagement of the B-cell receptor (BCR) with specific antigen. Recent imaging investigations have offered novel insights into the ensuing molecular and cellular events underlying B-cell activation. Following engagement with antigen, BCR microclusters form and act as sites of active signaling through the recruitment of intracellular signaling molecules and adaptors. Signaling through these "microsignalosomes" is propagated and enhanced through B-cell spreading in a CD19-dependent manner. Subsequently, the mature immunological synapse is formed, and functions as a platform for antigen internalization, enabling the antigen presentation to helper T cells required for maximal B-cell activation. In this review, we discuss the emerging and critical role for the cytoskeleton in the coordination and regulation of these molecular events during B-cell activation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom