z-logo
open-access-imgOpen Access
Models for the Generation and Interpretation of Gradients
Author(s) -
Hans Meinhardt
Publication year - 2009
Publication title -
cold spring harbor perspectives in biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.011
H-Index - 173
ISSN - 1943-0264
DOI - 10.1101/cshperspect.a001362
Subject(s) - morphogen , biology , lernaean hydra , interpretation (philosophy) , biological system , head (geology) , sequence (biology) , pattern formation , microbiology and biotechnology , evolutionary biology , neuroscience , anatomy , biophysics , gene , genetics , computer science , paleontology , programming language
Source regions for morphogen gradients-organizing regions-can be generated if a local self-enhancing reaction is coupled with a long-ranging reaction that acts antagonistically. Resulting gradients can be translated into patterns of stable gene activities using genes whose products have a positive feedback on the activation on themselves. If several autoregulatory genes compete with each other for activity, cells make an unequivocal choice. Although the signal consists of a smoothly graded distribution, the all-or-nothing response of the cells leads to regions of differently determined cells that are delimited by sharp borders. In some systems, it is not the absolute but the relative level of a gradient that matters. The sequence of head, tentacles, and foot formation in hydra is controlled by a head activation gradient and is an example of this widely used but conceptually rather neglected mode. For subpatterns such as legs and wings, different "compartments" cooperate to produce new signaling substances. Here, morphogen production is restricted to the common borders or where they intersect. The model accounts for the formation of substructures in pairs at the correct positions within the embryo and for the correct orientation and handedness with respect to the main body axes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom