Open Access
Genotypic diversity of H5N1 highly pathogenic avian influenza viruses
Author(s) -
Zi-Ming Zhao,
K. F. Shortridge,
Maricarmen Garcı́a,
Yi Guan,
XiuFeng Wan
Publication year - 2008
Publication title -
journal of general virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.55
H-Index - 167
eISSN - 1465-2099
pISSN - 0022-1317
DOI - 10.1099/vir.0.2008/001875-0
Subject(s) - influenza a virus subtype h5n1 , biology , virology , outbreak , pandemic , clade , genotype , virus , phylogenetic tree , gene , genetics , covid-19 , disease , infectious disease (medical specialty) , medicine , pathology
Besides enormous economic losses to the poultry industry, recent H5N1 highly pathogenic avian influenza viruses (HPAIVs) originating in eastern Asia have posed serious threats to public health. Up to April 17, 2008, 381 human cases had been confirmed with a mortality of more than 60 %. Here, we attempt to identify potential progenitor genes for H5N1 HPAIVs since their first recognition in 1996; most were detected in the Eurasian landmass before 1996. Combinations among these progenitor genes generated at least 21 reassortants (named H5N1 progenitor reassortant, H5N1-PR1-21). H5N1-PR1 includes A/Goose/Guangdong/1/1996(H5N1). Only reassortants H5N1-PR2 and H5N1-PR7 were associated with confirmed human cases: H5N1-PR2 in the Hong Kong H5N1 outbreak in 1997 and H5N1-PR7 in laboratory confirmed human cases since 2003. H5N1-PR7 also contains a majority of the H5N1 viruses causing avian influenza outbreaks in birds, including the first wave of genotype Z, Qinghai-like and Fujian-like virus lineages. Among the 21 reassortants identified, 13 are first reported here. This study illustrates evolutionary patterns of H5N1 HPAIVs, which may be useful toward pandemic preparedness as well as avian influenza prevention and control.