
Siderophore piracy enhances Vibrio cholerae environmental survival and pathogenesis
Author(s) -
Hyuntae Byun,
I-Ji Jung,
Jiandong Chen,
Jessie Larios-Valencia,
Jun Zhu
Publication year - 2020
Publication title -
microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.019
H-Index - 179
eISSN - 1465-2080
pISSN - 1350-0872
DOI - 10.1099/mic.0.000975
Subject(s) - vibrio cholerae , siderophore , microbiology and biotechnology , cholera , biology , vibrionaceae , microorganism , bacteria , genetics
Vibrio cholerae, the aetiological agent of cholera, possesses multiple iron acquisition systems, including those for the transport of siderophores. How these systems benefit V. cholerae in low-iron, polymicrobial communities in environmental settings or during infection remains poorly understood. Here, we demonstrate that in iron-limiting conditions, co-culture of V. cholerae with a number of individual siderophore-producing microbes significantly promoted V. cholerae growth in vitro . We further show that in the host environment with low iron, V. cholerae colonizes better in adult mice in the presence of the siderophore-producing commensal Escherichia coli . Taken together, our results suggest that in aquatic reservoirs or during infection, V. cholerae may overcome environmental and host iron restriction by hijacking siderophores from other microbes.