
Catwalk: identifying closely related sequences in large microbial sequence databases
Author(s) -
Denis Volk,
Fan Yang-Turner,
Xavier Didelot,
Derrick W. Crook,
David Wyllie
Publication year - 2022
Publication title -
microbial genomics
Language(s) - English
Resource type - Journals
ISSN - 2057-5858
DOI - 10.1099/mgen.0.000850
Subject(s) - python (programming language) , genome , computer science , reference genome , annotation , computational biology , pairwise comparison , sequence alignment , biology , data mining , database , genetics , artificial intelligence , programming language , gene , peptide sequence
There is a need to identify microbial sequences that may form part of transmission chains, or that may represent importations across national boundaries, amidst large numbers of SARS-CoV-2 and other bacterial or viral sequences. Reference-based compression is a sequence analysis technique that allows both a compact storage of sequence data and comparisons between sequences. Published implementations of the approach are being challenged by the large sample collections now being generated. Our aim was to develop a fast software detecting highly similar sequences in large collections of microbial genomes, including millions of SARS-CoV-2 genomes. To do so, we developed Catwalk, a tool that bypasses bottlenecks in the generation, comparison and in-memory storage of microbial genomes generated by reference mapping. It is a compiled solution, coded in Nim to increase performance. It can be accessed via command line, rest api or web server interfaces. We tested Catwalk using both SARS-CoV-2 and Mycobacterium tuberculosis genomes generated by prospective public-health sequencing programmes. Pairwise sequence comparisons, using clinically relevant similarity cut-offs, took about 0.39 and 0.66 μs, respectively; in 1 s, between 1 and 2 million sequences can be searched. Catwalk operates about 1700 times faster than, and uses about 8 % of the RAM of, a Python reference-based compression and comparison tool in current use for outbreak detection. Catwalk can rapidly identify close relatives of a SARS-CoV-2 or M. tuberculosis genome amidst millions of samples.