
SARS-CoV-2 replicon for high-throughput antiviral screening
Author(s) -
Qiu Yan Zhang,
Cheng Deng,
Jing Liu,
Jia Qi Li,
Hong Qing Zhang,
Na Li,
Ya Nan Zhang,
Xiaodan Li,
Bo Zhang,
Yi Xu,
Han-Qing Ye
Publication year - 2021
Publication title -
journal of general virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.55
H-Index - 167
eISSN - 1465-2099
pISSN - 0022-1317
DOI - 10.1099/jgv.0.001583
Subject(s) - replicon , biology , virology , biosafety , virus , high throughput screening , cytopathic effect , genome , gene , bioinformatics , genetics , microbiology and biotechnology
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which is highly pathogenic and classified as a biosafety level 3 (BSL-3) agent, has greatly threatened global health and efficacious antivirals are urgently needed. The high requirement of facilities to manipulate the live virus has limited the development of antiviral study. Here, we constructed a reporter replicon of SARS-CoV-2, which can be handled in a BSL-2 laboratory. The Renilla luciferase activity effectively reflected the transcription and replication levels of the replicon genome. We identified the suitability of the replicon in antiviral screening using the known inhibitors, and thus established the replicon-based high-throughput screening (HTS) assay for SARS-CoV-2. The application of the HTS assay was further validated using a few hit natural compounds, which were screened out in a SARS-CoV-2 induced cytopathic-effect-based HTS assay in our previous study. This replicon-based HTS assay will be a safe platform for SARS-CoV-2 antiviral screening in a BSL-2 laboratory without the live virus.