z-logo
open-access-imgOpen Access
HBx natural variants containing Ser-101 instead of Pro-101 evade ubiquitin-dependent proteasomal degradation by activating proteasomal activator 28 gamma expression
Author(s) -
Hyerin Jeong,
Sungkyung Cha,
Kyung Lib Jang
Publication year - 2019
Publication title -
journal of general virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.55
H-Index - 167
eISSN - 1465-2099
pISSN - 0022-1317
DOI - 10.1099/jgv.0.001337
Subject(s) - hbx , downregulation and upregulation , biology , replicon , activator (genetics) , hepatitis b virus , phosphorylation , cancer research , microbiology and biotechnology , virology , virus , gene , plasmid , genetics
Proteasomal activator 28 gamma (PA28γ) is frequently overexpressed in hepatocellular carcinoma; however, its underlying mechanism and role in hepatitis B virus (HBV) replication are largely unknown. Here, we found that HBV X protein (HBx) natural variants containing Ser-101 instead of Pro-101 increase reactive oxygen species levels in the mitochondria and activate the ataxia telangiectasia mutated/checkpoint kinase 2 pathway in the nucleus, resulting in the phosphorylation of p53 at Ser-15 and Ser-20 and the subsequent upregulation of its protein levels. Therefore, HBx variants containing Ser-101 induced p53-dependent activation of PA28γ expression in human hepatoma cells. The elevated PA28γ levels upregulated HBx levels through the inhibition of seven in absentia homologue 1-dependent proteasomal degradation. The self-amplifying ability of HBx variants containing Ser-101 via a positive feedback loop involving p53 and PA28γ was accurately reproduced in both a 1.2-mer HBV replicon and in vitro HBV infection systems, which also provided evidence for the stimulation of HBV replication by these HBx variants. In conclusion, the ability of HBx to upregulate PA28γ levels via p53 activation, in a Ser-101-dependent pathway, is critical for the stimulation of HBV replication.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here